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I
ABSTRACT

A model for the propeller-singing phenomenon considered as a self-

excited oscillation is presented to Interpret the finding of a recent

experimental work: viz., that, although the singing frequency roughly obeys

the well-known Strouhal relation, once the strong singing state has been

established, the frequency Is kept constant through a fairly wide range

of flow velocity, and consequently the frequency-versus-velocity diagram

exhibits step and Jump characteristics. The model presented is a "closed

loop" composed of a blade, as a mechanical-vibration system, and the Karman

vortex-shedding mechanism; the blade vibration controls the shedding mechan-

ism, and the hydrodynamic reaction of shed vortices sustains the blade

vibration. The control imposed by the blade vibration upon the vortex shed-

ding actually implies the synchronization of the latter with the former.

The model which simulates the vortex-shedding mechanism is essentially a

simplified mathematical expression for the disintegration process of the

vortex sheets shed from the separation points into the rows of discrete

vortices. The stability criterion derived for the synchronized run of the

shedding mechanism, together with the positive-work criterion imposed upon

the phase relation between the blade vibration and the hydrodynamic reaction

of the shed vortices, gives a reasonable interpretation for the step and

Jump characteristics.

KEYWORD

Propeller-Singing
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i
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NOMENC LAT URE

A shape parameter in "Influence" functions (Equation [10))I
a growth-rate parameter of vortices

B form constant (Equation [10])

I b shape parameter in "influence" functions (Equation [10)

C chord length

c integration constant (Equation [201)

D dimensionless velocity (Equation [391)

d trailing-edge thickness of body

E function of vortex-induced velocity (Equation (39])1
F function defined by Equation (31a)I
Fb amplitude of hydrodynamic reaction force on blade

f function (Equation [26])

f b natural frerquency of blade

f k shedding frequency of Karmhn vortices

I g(x) mode shape of blade vibration (Equation [461)
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i
H unit step function

h amplitude in blade-vibration mode shape

k characteristic parameter in Hurwitz-Routh stability
criterion (Equation (36])

n order of iteration process for criteria of stable
synchronization

q constant - I or 2 (Equation [39])

Sl(X), S2 (x) "influence" function (see Equation [27])

St Strouhal number = fk d/U

S ud/U, - 2TS t  non-dimensional frequency parameter of Karmn vortex
at free-shedding state

S' - w'd/U. - 2T1S t  non-dimensional frequency parameter at synchroni-
zation state

t •time

U flow velocity at separation point

U, Uo(.) steady component of flow velocity at separation point

U wvelocity at which vorticity is flowed away

UM flow velocity at infinity

velocity induced by point vortex at separation point

(see Equations [1] to (4])

periodic component dmplitude of flow velocity at

U0 Uo() sepuat ion, point

viii
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u neutral value of u0  (see Equation (33])

w see Equation (52)

I x, y coordinates in z-plane

j z physical plane

a phase relation between velocities uv and u°

0 neutral value of a (see Equation (33])

0 see Equation (52)

', 0' constants in "influence" functions (Equation [10])

r(.) circulation of point vortex (see Equations [11] to [i])

r(.)(xt) vorticity distribution in vortex sheet

r O, to(.) mean vorticity in vortex sheet

r s(.) shedding rate of vorticity from separation point

y ox) Yo (x) perturbation amplitude of vorticity distribution in1 0vortex sheet

I small number

C transformed plane

I , Ti coordinates of C-plane

ix
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o phase angle between flow velocity due to blade
vibration and velocity of blade vibration at
separation point

4 expression given by Equation (34)

Sangular coordinate along blade chord (Equation [40])

X expression given by Equation (26)

expression given by Equation (34)

w angular frequency of free vortex shedding

W1 angular frequency of vortex shedding at synchroni-
zation state - natural frequency of blade vibration

Subscripts

refers to imaginary part

Arefers to lower separation point

r refers to real part

u refers to upper separation part

v refers to flow velocity Induced by blade vibration

x
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I
i INTRODUCTION

The propeller-singing phenomenon has for a long time been understood

Jas a forced vibration of the blade due to the hydrodynamic reaction force

of the Karmn vortices shed from the trailing edge.

Recently, however, an experimental study I revealed a particular

feature of the phenomenon: though the relation of singing frequency versus
U

flow velocity roughly obeys the well-known Strouhal relation fk W S -

the frequency in the strong singing state is nearly constant through a

fairly wide range of flow velocity and consequently (as is shown in Figure 1)

the relation of singing frequency versus flow velocity has steps.

Here

f k 0 shedding frequency of the Karman vortices

f St - Strouhal number

! - flow velocity

I d a trailing-edge thickness of body

jEach frequency at strong singing state (characterized by a step) seems to

correspond to one of the natural frequencies of the blade. During changes

in the flow velocity, a strong singing state appears on each step, and

successive changes cause the Jump phenomena shown by the dotted lines in

the figure. This kind of phenomenon was also observed in the experiment

on suspension-bridge oscillation due to vortex shedding.2

Arnold et a13 interpreted this particular feature of the strong-

singing phenomenon as a special kind of resonance based on an experimental

hypothesis that the shedding frequency of the Karman vortices becomes

lower with increase in amplitude of blade vibration. However, as is

suggested by Krivstov and Pernik, I it is more natural to regard the

singing phenomenon as a self-excited oscillation of the system which In-
e, I

cludes the Karman vortices-shedding mechanism. In this paper, a model for

I the singing propeller is presented along this line.
PI
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SELF-EXCITED OSCILLATION LOOP FOR SINGING PHENOMENON

It is well known that the self-excited oscillation system is simu-

lated by a "closed loop." For the propeller-singing phenomenon, the loop
will be expressed as is shown in Figure 2. The "blade" element may be

regarded essentially as a mechanical-vibration system. The other element -

the Karman vortices-shedding mechanism - is, on the other hand, a self-

excited system which can continue to shed vortices periodically without any

periodic stimulation from outside. This element plays the more Important

role in the singing phenomenon. The discrete structure of the Karman vor-

tices Indicates that this self-excited system should have strong non-linear

characteristics. The important aspect of such a non-linear self-excited

system is the phenomenon called "synchronization" or "entrainment";4 that

is, the operation of the non-linear self-excited system is often synchron-

ized with the periodic stimulation from outside which has a frequency not

so different from the natural frequency of the system. In the present

problem the above-mentioned phenomenon corresponds to the synchronization

of shed vortices with blade vibration.

The blade element is, as stated above, essentially a mechanical-

vibration system with large mass and stiffness, and definite natural fre-
I I

quencies fb * The natural frequency of the Karman vortices-shedding

mechanism, given in the form fk ' St T , depends strongly upon the flow

velocity U. . In the range of U. in which fk differs largely from

the natural frequency of the blade fb ' the vibration amplitude of the

blade due to the reaction force of the Karman vortices will be small, and

the signal from the blade element will be too weak to synchronize the
Karman vortices-shedding mechanism. In this condition, the loop in Figure 2

Is open between these two elements, and the system is in the state of a

mere forced vibration caused by the reaction of the shed vortices. This

Is the weak singing which occurs at the frequency corresponding to the

Strouhal relation. When U. is changed and fk approaches fb 0 the

amplitude of the blade vibration becomes large enough - in other words, the

2
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signal from the blade element becomes strong enough - to synchronize the

shedding of the vortices. Thus, the loop in Figure 2 is built up and the

system enters into the strong active state. Of course, in this picture,

It is necessary that the loop transfer function have unstable character.

If the shedding mechanism of the vortices can be synchronized with the

vibration of the blade through a fairly wide range of velocity, one can

Jsee that, with the strong singing state established, frequency remains
constant at one of the natural frequencies of the blade, through a certain

fflow-velocity range.
The strong singing state of the present model will occur when the

KArman vortices-shedding mechanism is synchronized with the blade vibration

and, furthermore, when a favorable phase relation between the blade vibra-

tIon and the hydrodynamic reaction exists. If these conditions are lost

by changing the flow velocity, the system will jump from the strong singing

state to a weak singing one with constant Strouhal number and will continue

In the latter state until it reaches the next natural frequency, where

another cycle of strong singing will appear.

!
I
I
!
I
I

I
i T 3



I
R- 1059

I
I

THE KARMAN VORTICES SHEDDING MECHANISM AND ITS
SYNCHRONIZATION WITH BLADE VIBRATION I

To provide concrete support for the above discussion, a suitable j
model for the vortices-shedding mechanism should be presented. Von Karman's

work notes the stability of the vortex rows, but it does not explain how

these rows of discrete vortices come into existence. This, together with

the fact that we lack any record of experimental observations of the flow

near the trailing edge and In the wake of an oscillating body, proves a

stumbling block in the present analysis. A mathematical model will be

presented here which possesses the synchronization mechanism and the main

features of the above-mentioned propeller-singing phenomenon.

PRESENTATION OF THE MODEL

The vortex-shedding process may be dealt with by solving the Navier-

Stokes equation under given conditions. The analytical approach, however,

seems desperate, and the numerical attack also seems hopeless (except for

the case of low Reynolds number) even if a computer with large capacity

Is used. Another approach may be to treat the process as a kind of Helmholtz

Instability problem5 (using the method adopted by Rosenhead 6), since obser-

vation of the downstream flow of a body with a blunt trailing shape Indicates

that the vortex sheets, which originate from the vorticity in the boundary

layers and are shed from the separation points, roll up and concentrate

into rows of discrete vortices a rather short distance away. The model

presented here is constructed on the basis of this description, with some j
speculative mathematical simplifications which are adopted in order to

Introduce a non-linear oscillation version into the field of hydrodynamics

and to obtain a wider view of the particular feature of the singing phenome-

non described in the previous sections of this report.

As noted earlier, the vortex-shedding mechanism is a self-excited

system and Itself should have a closed loop, which plays the role of a

4I
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"minor loop" in the main loop shown in Figure 2. On the basis of the fore-

going description, the synthesis of the loop of the shedding mechanism may

be given as follows:

1 (1) The existing downstream vortex rows exert a periodic flow distur-

bance upon the separation points.

(2) This flow disturbance at the separation points causes a

periodic disturbance in the strengths of the vortices which are

shed from the separation points into the vortex sheets.

(3) Thus the generated non-uniformity of the vorticity distribu-

J tion in the vortex sheets plays the role of the embryo of the

discrete vortices; or, in other words, this non-uniformity grows

up into the Karman vortex streets.

The block diagram of the thus synthesized loop and the corresponding

schematic picture of the flow are shown in Figure 3.

If the blade is vibrating, flow disturbance due to the vibration

may be superimposed on that due to the shed vortices at the separation

points, as is shown in the block diagram of Figure 3 by a dotted line. This

flow disturbance due to blade vibration plays the role of the synchroniza-

tion trigger signal.

L- MATHEMATICAL EXPRESSION FOR THE CONSTITUENT ELEMENTS

£Assuming two-dimensional ideal-fluid flow, the mathematical expres-

sion of the constituent elements for the foregoing model may be given as

1follows:

(a) The Disturbance Velocity at the Separation Points
Induced by the Downstream Vortices

The velocities induced by the shed vortices at the separation points

are affected by the shape of the body. For simplicity, let us consider

first a circular cylinder body of unit radius. The coordinate system Is

Ishown In Figure 4a. It is assumed that the flow separation points are

located at (x 0, y - - I) and that the vortices shed from the separation
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I
points are flowed away along th.. lines y - I . The Induced velocity

Uuu (x) of an Isolated vortex ru  located at (x - x, y - + 1) and of its I
corresponding Image (as shown in Figure 4a) upon the upper separation point

(x - 0, y - + 1) Is given as
r

uu(X) I- ~ I

Similarly, the effect of r at (x - x, y - -I) and of its corresponding

image upon the upper separation point is

UulX) " 
(2)

In the same way, the effects of r and rL upon the lower separationU

points are given by

u UWX (3)

uAI(x) - (4)

The functions Suu(X) *, Su(x) , Su(X) , and S,(x) are Introduced,

and we have

uu (x) uuL(x)

uu (x) - uu S (x) - r

Uu(X ) UA(x) uAAWx5
SU(x) " r sA(x) - r, (

For convenience, these are called "influence functions," since they represent

the effects of the unit strength vortex at (x - x, y - 1 1) on the Induced

velocity at the separation points. These functions are graphically ex-

hibited in Figure 4b.

6



R-1059

In the case of a body with trailing edge of parabolic shape (Figure 5a)

given by

y = 1- (2/3) x (6)

with flow separation points at x = 0 , y - I , it is assumed that the

I shed vortices are flowed away along the lines

y t 1 2
3 x+l

which are tangential to the body surface at the separation points.

The conformal transformation

Vz -3 (7)

which maps the flow field in the z-plane into the right half of the

C-plane (Figure 5b), provided that a cut along the x-axis from -- to 4/3
is Introduced, determines the complex velocity potential by means of the

I "wall effect." The influence functions Suu(X) Suj(X) , SW S,(x)

are evaluated and exhibited in Figure 5c. The influence functions for

both circular cylinder body and parabolic trailing-edge body exhibit the

following general features, as shown by Figures 4b and 5c:

(1) Sxuu() - - SA(x)

Su(x) - - Stu(x) (8)

(2) Suu(X) and SAA(x) have finite value at x - 0, while

SuZ(x) and SLu(x) are zero at x - 0. These functions

have an incubation interval before a large rate of

IIncrease appears with Increasing x , and remain almost

constant at still larger x

i 7
t
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(3) For large values of x

Sut(x) - SxuuX) and Stu(X) St(x) (9) 1

By utilization of these general characteristic features, the Influence

function can be approximately expressed by

Suu(X) , . SAL(x) Ae-

S u(x) - Stu(x) - - Ae' Vx + Be"0 x) H(b) (10)

where H(b) is the unit step function at x - b and A , B , cv', and

are positive constants.

For further simplification, the motivation of which will become

apparent in the discussion which follows in a later section, it is assumed

that B - 0 0, and ' -0 ; hence

Suu(x) - " Silx) - mI Aedx)

Su(x) - " S~u(x) - Urn Ae-CX H(b (11) •

This simplification affects the results quantitatively, but presumably not

qualitatively.

(b) The Strength of Shed Vorticity in Terms of
Flow Velocity at Separation Points

Let the velocity distribution in the boundary layer, the velocity

outside the boundary layer, and the thickness of the boundary layer at the

upper separation point be designated by Uu(Y) Uu , and 6 , respectively.

The vorticity shed per unit time from the upper separation point Into the

upper vortex sheet is given by

6 d Uu(y) I
rsu - (y) dy - u (12)

S8
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Similarly, for the lower separation point,

S 2 ut (12a)

where U1 is the velocity outside the boundary layer at the lower separa-

tion point.

If it is assumed that the velocity at the upper separation point,

Uu , is composed of the mean velocity U and a small perturbation velocity
iWt ou

of periodic nature, u 0 e , then the vorticity shedding rate from the

upper separation point is given by

r -I (U 2 + 2U u eiwt) (13)SU 2 o ou ou

and similarly from the lower separation point, by

rL 1 o2 + 2UUe iWt) (14)

(c) Concentrating Process, Vortex Sheets into
Discrete Vortex Rows

Rosenhead's treatment 6 for the rolling-up phenomenon of the vortex

sheet in the Helmholtz instability problem indicates that the local distur-

bance in the vorticity density in the vortex sheet causes a geometrical

deformation of the sheet. This deformation gives rise to the migration

of the vortices in a manner which promotes the growth of vorticity density;

fthus these two processes cooperate in causing an accelerating concentration
of vorticity. In the present treatment, a simple mathematical expression,

I based on the above-mentioned feature of the Helmholtz instability problem,

is given for the disintegration process involving the shedding of the vortex

sheets from the separation points into discrete vortex rows.

It is assumed that the process follows the pattern outlined below

and shown in Figure 6.

(I) The vortex sheets shed from the separation points are flowed

9
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away along the designated path.

(2) The vorticity densities in the sheets have sinusoidal distur-

bances due to the periodic fluctuations in the vorticity-

shedding rate given by Equations (13) and (I4).

(3) The amplitudes of the disturbances Increase with distance

x from the separation points.
IJ

According to this picture the vorticity distributions in the upper and the

lower sheets may be expressed as

iw[t - (x/Uw)]

r u(xt) - r OU + Yu(x,t) - rOU + You(x)e

and ('15)
iw[t - (x/U.)Jad(x,t) - roL + y (x,t) - r ol + -ox(](e

respectively, where Uw  is the constant velocity In the x-direction by

which the vorticity Is flowed away, rou and rot are the mean vorticity

densities In the sheets, and You(x) and yot(x) are the amplitudes of

the disturbance terms In the vorticity densities. On the basis of the

continuity equation

r At - F U At

where At is a specified interval of time, together with Equations (13)

and (14), it is apparent that

r -IU ou, .You.0. U ou uou (6
ou - 2 U U (16)

and - -1 Uo 0ULU 
(17)ro "2 u o (°) " (7

w w

It will be assumed that the process which embraces the passing of

the vortices from the embryonic stage to complete disintegration into

10
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discrete vortices is completed at the stage where the amplitude of the

perturbation vorticity density becomes equal to the mean vorticity strength
of the sheet.

I The simplest mathematical expression which satisfies the above

requirement and fixes the growing rate with x of the disturbance ampli-

tudes You (x)l and lyot(x)l is assumed to be

d ~ xJH xIIYOWxI)S, ()- -a 0 (~ (i1- I°xl(18)

I ro 0 ro0 Ir01

where the constant a is the growth-rate parameter. The absolute value

jhas been introduced so that the above relation will hold true for either

upper or lower vortex sheet. It Is obvious that this relation ensures the

final value of I Yo(x)I as equal to Irol

The solution is given by

Y -Wea~ (19)i ro 1 1ax+c

where the constant c is

I c n [ -yo()/rol] (20)

I The value of yo(x)/Iro is graphically exhibited (see dotted lines) in

Figure 7, in terms of ax + c . If for simplicity the value of

I Iyo(x)l/l 01 is replaced by a unit step function at ax + c - 0 , then

it can be seen (from Figure 7) that a suitable approximation of the

function IyWx)I/Irol Is obtained. Hence

- H I-n r 0  (21)

0aI
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I
where H(x) denotes a unit step function at x . Applying Equation (21)

to Equations (15), (16), and (17), the vorticity distribution on the upper I
and lower vortex sheets will be given by

U3  u H. /1 -21UouJ/U x/u
F(xt) - I + H 1n u ou ew(t wu(2t) luoul 1a Uu 2Iu/u )

and

r,(Xt) u2 1 +U01 [H (I -2uo1/Ui/jlwtx/W
w (2uo l , j uo (2)

where

U U iu e CUu ou ou

and

iwt
UL - Uof + Uole

are the velocities at upper and lower separation points respectively.

FREE SHEDDING OF THE KARKAN VORTICES

Now it is possible to coi,-ose a mathematical equation for the closed

loop of the vortices-shedding mechanism. The closed-loop equations with

respect to the upper and the lower separation points are

Uu - - Suu(x) ru(x,t) + Su,(x) r,(xt) dx

ut -u. - S,(x) r(x,t) + Szu(x) ru(x,t) dx (23)

where U. denotes the uniform flow velocity at infinity and the other

12
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notations are as given in Equations (9) and (10).

Here, the following assumptions are Introduced:

I (a) Yo(X) - Yo(x) (24)

Therefore, from Equations (16) and (17),

As can be seen in Figure 6, this assumption is Imposed by the well-known
arrangement of vortices typical to the Karman vortex street.

(b) Uou U o1 - U," - 2Uw  (75)

I If the body is flat In the direction of the main flow, and if the wake

region near the trailing edge Is regarded as dead water, the relations of

Equation (25) should give a good approximation.

Then Equation (23), together with Equation (22), yields the time-

dependent part of the shedding mechanism:

i ,e°< ( uuu 1 12i

O u S u(X) u  Hul uou
I  u , " Su (x) l uo H .1

IUM jO L IL a ( U /Ju
lw(t-2x/U) dx

uo e__ Uo2 I ou P 2uo
0 - (x) -o H 1 f 01 + S (x) - H -f

u. u -skx lUoM I u j SuX ou!  1U'-. )]I

e iw(t-2x/U.) dx

where

f(x) fn ('-') and x - OuL (26)U .

13
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I

If the symmetrical relations, Equations (8) and (24), are taken Into

account, the two equations in Equation (26) become Identical and can be i
expressed as

u° - f [S (x) + S2(X)] H f(_ )e" iSx dx (27)

u. aI

where

u " o u " oA

S1Ix) " u(X) - - S,(x) " Im -Ae""t0x -AI o e1

S2 (X) SuS(x) - - SJu(x) - lim [Ae XH(b)]

S - 2w/U,,

If the representative thickness of the body is taken as 2 (the value taken

as the separation-point thickness) in the evaluation of S (x) and S(x)

then

S - 2 tS (28)

where St is the Strouhal number.

It should be noted that, due to the symmetry relations introduced

by Equations (8), (24), and (25), the system of simultaneous equations

given by Equation (23) or (26) for the upper and lower separation points

Is reduced to a single equation (Equation [271).

Upon Integration, Equation (27) yields

u 1u
U[-is f( O )] Iu .I AiS e.)e

_.R - iA-
U S

for b > f 2u 0
(29)

14
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or

u "IA 1[e" a U.
I 2u

for b< ; f( U)

The real and Imaginary parts of the above expressions are sufficient to

determine the unknown S and UOIT
SYNCHRONIZATION OF SHEDDING MECHANISM WITH

BLADE VIBRATION - STABILITY CRITERIA

If the blade vibration Induces periodic flow disturbances u vue iw t

and Uv.eiw at the upper and the lower separation points respectively,

these may act as a synchronization signal, as is shown in the block diagram

of Figure 3. Assuming the symmetrical relation

1 uvu M- UvI(- uv) (30)

1 the loop equation for the synchronized condition is obtained as

1
eo I = e ( +S(x)+S(x)] H [If(2 u X- dx +u

I U-D Jo 2 J a

(31)

where
S Wu

I and cr Is the phase relation between uv and u

It should be noted that In the above equation the periodic disturbance

Induced by the blade vibration Is assumed to be known, whereas the total

perturbation velocity at the separation point, uo, and the phase angle C

are both unknown and will be determined by the solution of Equation (31).

It should be pointed out, also, that Equation (31) describes the neutral

15
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condition for the synchronization, and that there is thus a possibility

that its solution will represent the unstable synchronization state, where

small deviations from the neutral condition may grow unboundedly with in-

creasing time. To exclude this possibility, a stability analysis for the

synchronization must be performed. The powerful method Introduced by

Van del Pol for stability analysis 7 cannot be utilized in the present case,

since Equation (31) is an algebraic equation stating simply the neutral

condition; hence the timewirse growth and decay of any deviation from this

condition is not taken into account. In this paper, the following approxi-

mate method will be used.

An Iteration scheme is developed based on the fact that the n th

iterative values of u and t , written in the form

U - u0 + (Auo )

can be obtained from their (n-I)th values,

uO- u + (Auo )n-
and

01 - of + (A) n000 n-I

(where u0 and ot are the values at the neutral condition and Au0  and

Act are small deviations from these values) by means of Equation (31). Let

F [f(./2)] \ fm [IS (x) + S. (X)] Hj[-; f ( i 5 )]e 0ISx dx

Then Equation (31) can be written as

. [ f + uOl+)
e 0 e F U. (310)

16
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Substitution of the nth iterative values on the left-hand side and the

(n-l)th values on the right-hand side of this equation yields

u 0 + Ou )n ij[+(Aa)n] . '[e+Aan1 FIf [ ' (u. +ju l)]+
. '. . oo" lU'n- ').1

IIf only the zero- and first-order terms are kept in this Iteration scheme,

the following approximate equation results:

u ia (Au) ia u Ia

11 Ff(.-.-T-)] e 0o + IFlf ._(_o)] (A) . eI

I df if A (u iUe  (32)
\df du1j uu00  0~) e +

jFrom Equation (31a), at the neutral condition,

0(33)u. . .)J U.,,

Substitution of Equation (33) into Equation (32) yieldsI
(u) u _F __ r2u00AI - (&1) n - °Uo (Au)n-I + IF L - J "C)n-IuO uV n aTa o u 00 IfI

Subtracting

(Au n +i u (AC)

1 17
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I=
from both sides of the foregoing equation results in

(Au )n - (Au ) 1- u 001UC0 + I . I(A!) n" (ACV) n-!

(Uorn u(c~

(Au -1 o (A V)
u on. n-I (34)

where

u U
= d F d Uru

o 00

Since (Auo)n - (AUo)nI and (AcY)n - (Ar)n-i are the changes in AuO  and

Aot per unit operation from n-I to n , or the rate of change of Au0

and Act , Equation (34) can be written, for the case of very slow rate of

change, as

d(u) ,u(A~)Au u
W d 00 dA (35)

Uo dn + U.n dn Ur + A.)

which represents a system of first-order homogeneous differential equations

with unknown Au0  and A . On assuming solutions of the form

Au 0 u ekn and U0(A) k n

the following charecteristic equation is obtained

* -k I
r r

- (36)

'-Y I -k

I 18
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where r and I denote real and imaginary parts, respectively. The

growth or decay of Au and Aa is discriminated by applying the Hurwitz-

Routh criteria. For a stable solution, i.e. decay of the deviations from

the neutral state, the conditions

(a) (Tr + > 0

I (37)
(b) r'PI  - 'Pr* > 0

I must be met.

The previously raised question of the stability at the synchronization

stage can now be tackled on the assumption that there is a very slow time-

wise change of the deviations Au and Aa . In such case the problem of

stability at synchronization is equivalent to the problem of the convergence

of the foregoing iterative process. Then Equation (37) may be regarded as

[the stability criterion for synchronization.
Upon Integration, as In Equation (29), Equation (31) yields

u O [ .IS' I~ f(.. uQ) ~ -Is Ifb] el uI or
-,s7 + e .

2ufor b > f 0 ° (38)

a -U.

Sf or
ot I A I iS' ft 01Uotl uvI. I "1;7 'T." =~'

f or ,, <,1 f,2u
a ( U.

I and the corresponding stability criterion, Equation (37), with the use of

(38), Is

MI I - Eqcos - f 00 + Dcs oto >0

I
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(II) 
D cos cv I - Eq cos S' / f

0 I o~

D Eq sin c% s n[S' 
2 u 00)] 0 

(39)

where 
q2

q - 2 for b > ( 4 2) 0

2u oq = 2 or b < ,( f )

Uv and E. - f d 0

00 ao ~ 0 0

20
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L
SYNCHRONIZATION SIGNAL FROM THE BLADE VIBRATION AND

HYDRODYNAMIC REACTION OF THE SHED VORTICES

3 In order to complete the closed loop shown in Figure 2, the synchron-

Ization signal due to the blade vibration and the hydrodynamic reaction of

the shed vortices upon the blade should be evaluated. In the mathematical

treatments of those two quantities, the blade is assumed to be a flat plate,

and the thin-airfoil method is used. The corresponding coordinate system

J is shown in Figure 8.

ISYNCHRONIZATION SIGNAL DUE TO BLADE VIBRATION
The flow in the system under consideration is composed of two parts.

[One is "no circulation" flow due to the blade vibration and the other is

the flow with circulation due to the shed vortices. "No circulation" means

1that the total circulation around the body is zero. In Equation (31) or

(38), that flow velocity at the separation points which is due to the "no

circulation" part is uv , and that due to the total flow is u . Deriva-
tion of u for the assumed mode of blade vibration follows.

V

Consider the bound-vortex distribution

Yb(x,t) - Yb,(X) •iw't

= U[oCOS T I AI cos 2y) A s in ny e It (40O)
sin p 2 -1 sinqp

n-2

where x -- (Il + cos 9) and C is the chord length. Clearly, this

bound-vortex distribution satisfies the "no circulation" condition

I f ° Ybo(x) dx - 0 (41)

I The strength of the bound-vortex distribution near the trailing edge

I

21
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i
-.T - * , where n > > € > 0 , is given by

11 1
ybo(P - IT 2U (A + -A,) (42)

Therefore, if y - TT - e denotes the coordinate of the flow separation

points,

v u,(A0 + -1 A,) (43)UVu  2 C v =A I

This satisfies the symmetrical relation Equation (30), and uv  can be

written as

Uv Jo 2 1 + A,)- (44)

For a particular vibration mode, A and A, are determined as follows:

The Induced velocity of the bound vortex in the y-direction is

vl(X.t) - I . Yb- d eIWt

M U A + ZA n cos nj]eiw't (45)

If the vibrational velocity of the blade in the y-direction is given

by

vb(x,t) = Uog(x) e (46)

then the boundary condition on the blade requires that

vi(x,t) - + U L) Yb - 0

where Yb is the vibrational displacement of the blade. The above

boundary condition can be written as

vl(xt) - Vb(Xt) + U. vb(x,t) dt] 0

0

22
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and therefore A and A are determined by
0

-Ao + 1 An cos n g(x)- Uc, g'(x) (47)
I n=]

HYDRODYNAMIC REACTION FORCE ON THE BLADEIDUE TO THE SHED VORTICES

To ascertain the existence of self-exciting singing, the vibratory

force exerted on the blade, due to the bound vortex and to shed vortices,

has to be evaluated and its phase compared to the vibration velocity of

fthe blade.

The hydrodynamic force exerted by the "non-circulatory" component

of the bound-vortex distribution corresponding to any blade vibrational

mode has a virtual-mass term only and no damping component. On the other

hand, the reaction force of the shed vortices has a damping, as well as a

virtual-mass, component. Therefore, for the discussion on the existence

of self-exciting vibration, only the latter hydrodynamic force should be

taken into account.

The reaction force due to the shed vortices is evaluated by the

method used by Karman and Sears in non-stationary wing theory. As is

shown in Figure 8, the shed vortices are assumed to be flowed away along

the x-axis. The shed vortices have their counter vortices on the blades;

[ these are known as bound vortices. Thus the flow system due to the shed

vortices is composed of the vortex pairs. Then the momentum in the y-direc-
.th

tion due to the i vortex pair is given by

I = pr i(xsi - xbi) (48)

where p , ri , and xbi denote the density of fluid, the circulation of

the shed vortex located at xsi , and the location of the counter vortex,

respectively. The force upon the blade due to the particular pair is

= dI d (xsdF t "p 7-Fi ( i "Xbi) (49)

! 23
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Assuming for simplicity that the counter vortex Is concentrated at the

trailing edge (x - 0), Equation (49) becomes

F - -p r P x (50)

In the present problem, the sum of the vorticity distributions from the

upper and the lower separation points yields

r"i" 2ei~ruHl f('-)] e wt - S'x] dx (51)

where the time origin is the same as in the case of Equation (31). The I
total force acting upon the blade is then given by

2Pw 2TTf+ an0+2

Fb P d f rxdx - S, I i + wa  t
0o S (50)

where I
8 -1W= I -f~-j- tan- IwS

If the effective thickness of the blade at the separation point Is taken

as d S w'd

U. j
and hence

2~ ~ ,I7rti ic+Ptan +)Fb 2 PU2 d + (53)
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I
EXISTENCE OF THE SELF-EXCITED SINGING STATE

The various constituent elements of the closed loop comprising the

* propeller-blade vibration and the Karman vortices-shedding mechanisms having

been determined, it Is now possible to present a mathematical expression for

the existence of the self-excited singing state. In doing so, however, It

seems useful to summarize the previously obtained results.

I(1) Blade Vibration to Synchronizational Signal

When the vibrational velocity of a point on the blade Is given by

I Vb(x.t) - Uog(x) e iW't (46)

the synchronization signal Is expressed In the form of

SIw t I (44)uv e 2 U1(A +6A)-e

I where

"AA0 +n- A n cos nq' - g(x)- i g'(x) , x---C (I + cos q) (47)

and ff - . C (TT > > e > O) is the location of the separation points.

(2) Synchronized Operation of the Shedding Mechanism with u ve

IThe governing equation for the synchronization, after use is made

of the simplified expression Equation (11), is given byI
iUo ri 1 / eo\ v

I for b> - ' f(9)2

5a +uSe 0



R- 1059I
o, I

orI

e 2eS ( .O-)je'a + -v
S I

for b < f - 0 (38)

Furthermore, the stability of the synchronization state requires that -

(1) 1 -Eqcos S .1 f( 22)]+D Cos V 0 o

and

(II) D cos % I - Eq cos[S' t f0 1 a U-)

- D Eq sin a sin S I f-'2u"J 0 (39)

Equations (38) and (39) give u ° and a in the stable synchronized

condition for given synchronization signals uv and S'.

(3) Hydrodynamic Force Reaction Due to the Shed Vortices

When u and ca are given, the reaction force on the blade is 1
F I (a + 0 - tan 0 + 2)

Fb 2 U d + w2 e• (53)

where the origin of time i.; taken so that uv has a real positive value.

If the above results are used, the criterion for the positive work

of the reaction force upon the blade vibration can be obtained; this is

composed of the criteria for the existence of the self-excited singing

state together with that of stable synchronization, Equation (39), I or Ir.

In the first place, it may be assumed that the reaction force is concentrated

26
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near the trailing edge of the blade. As was stated earlier (p. 23) the

"no circulation" component of the bound vortices which is caused by the

blade vibration exerts no damping effect. Therefore, If the absolute value

of the phase difference between the reaction force F eiW t and the vi-

bration velocity of the trailing edge Vb(O,t) - Uwg(o)eiw't  Is less than

r the reaction force should exert positive work upon the blade vibration.

As Equation (53) has Its phase origin at uv , the .criterion for positive

work is given by

1 - TT < + -tan 0 + < 0 (54)

f where, from Equations (46) and (44),

iw't
-r arg o~~TTc 2

e v arg V6 (qPm1.€,t) g ((f.,n-e)

I27
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I

NUMERICAL CALCULATIONS AND DISCUSSION

I I

FREE SHEDDING OF KARMAN VORTICES I

For several values of A , b , and a , the unknown Strouhal number

and dimensionless velocity ratio u /U. are determined by Equation (29)

for the case of free shedding of Karman vortices. Both these unknowns are

determined by solving the real and Imaginary parts of the above equation "

simultaneously. Due to the complicated form of the function f(2u /U.)

the equations are solved graphically and the corresponding results are

summarized in the following table.

a A St  uo/U

2 1/21 0.202 0.141 T

2 0.8/2TT 0.197 0.127

b - 2 1 0.6/2TT 0.175 0.145 1
2 0.6/2TT 0.191 0.110

3 0.6/21 0.200 O.080

2 0.5/21 0.185 0.099 1
The parameters A and b , which are shape parameters, can be sel- )

ected according to the particular body shape. The parameter a , however,

which is related to the rate of growth of the disturbance in the vortex j
sheet, can only be selected by trial. The selected values of A and b

seem to be reasonable ones, since (A - -L , b - 2) and (A - q6 , b - 2)

describe approximately the circular cylinder body and parabolic trailing-

edge body. The corresponding value of Strouhal number (around 0.2) seems

very close to the usual experimental results. The values of uo/U. seem

reasonable also. This is an indication that, in spite of all the assumptions

made, the present mathematical model for the free-shedding mechanism is

promising. 28
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i
SELF-EXCITED SINGING

A series of numerical calculations was made to Illustrate the

Iexistence of the self-excited singing and to clarify its mechanism. As

is seen In Figure 9a, the following vibrational modes of the blade have

been considered:

(a) Ist mode: spanwise bending mode, with g(x) - h - constant

I(b) 2nd mode: torsional mode, with g(x) - - h cos Y

() 3rd mode: chordwise bending mode, with'g(x) - h cos 2V

where the transformation from Cartesian to angular coordinates is given

by x - - (l+cos T) , C - chord length of blade. The ratio of the separa-

tion-point thickness d to the chord length C is 0.1

The numerical work has been performed along the line Indicated In the

I section on existence of the self-excited singing state (p. 25). In the

first place, the real and Imaginary parts of Equation (38) are solved

[simultaneously with respect to uo/U,  and a for given uv/U. and S'.

It may be useful, here, to note the following points:

I (I) uv/U. , the trigger signal for the synchronization of the

vortex shedding with the blade vibration, is proportional

j to the amplitude of the blade vibration and Is nothing but

the amplitude of the blade vibration expressed in hydro-

dynamical terms.

(2) S' - w'd/U is the non-dimensional expression of the

Inatural frequency of the blade vibration w' (- the

strong singing frequency) In terms of the blade thick-

ness at the separation points, d , and the flow velocity

at infinity, U. . The expression S'/S will be used in

place of S', where S - wd/U , , and w Is the free-

I shedding angular frequency of the vortices. Since

S'/S - w'/w , S'/S should be named "tuning factor."

Meanwhile, since S - 2rvS (see Equation (281; S is
t t
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I
the Strouhal number) is constant for a given blade shape

Independent of the flow velocity, and since, furthermore,

w and d are also constant for the given blade, S'/S -

(w'd/2nSt ) (I/U) has the sense of a non-dimensional ex-

pression of the reciprocal of the flow velocity U.

If the obtained values of u0 /U. and 1 are applied to Equations (39)-I

and (39)41, the limits are determined for the stability of the synchroniza-

tion of the vortex shedding with the blade vibration, under the given blade-

vibration amplitude uv/U, and the given tuning factor S'/S . In a

similar way, Equation (54) can be used to check and determine whether or

not the hydrodynamic reaction of the shed vortices exerts positive work

upon the blade vibration.

In the actual calculation, owing to the complicated functional form

of f (.) it is difficult to solve Equation (38) with respect to

uo/U. and for given uv/U. and S I/S , and, therefore, an auxiliary
procedure is Introduced: Equation (38) is solved with respect to uv/U

and t for assumed uo0/U and S'/S . This procedure gives, for each

value of S'/S , the auxiliary diagrams illustrated in Figures 9b and 9c,

on which are also indicated the ranges where the criteria of Equations (39)
and (54) are satisfied. From these auxiliary diagrams, the final charts

shown in Figures lOa, b, and c are derived. Figures 1Oa, b, and c exhibit

the two kinds of limit boundaries corresponding to the stable-synchroniza-

tion criterion, Equation (39)-I, and the positive-work criterion, Equa-

tion (54), on a Uv/U. versus S'/S plane. Since the condition Imposed

by Equation (39)-I is always more severe than that Imposed by Equation (39)-I,

the limit boundary due to the latter is omitted.

The values used in this calculation for the parameters are A -o

b - 2, and a - 1, 2, 3. The first two are approximating values for a

parabolic shape of the trailing edge of the body. On the other hand, the

given values of a are mere trial. However, although the choice of a

causes some quantitative effect, as seen in Figures Ia, b, and c, the

qualitative nature does not seem to be altered.

It should be noted that Figures lOa, b, and c indicate whether or not

the assumed value of uv/U. satisfies the two criteria, but give no

30
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information with regard to the determination of uv/U. . This is the

problem of the limit-cycle amplitude of the blade vibration, which should

be resolved by considering the balance between the energy input due to

the hydrodynamic reaction force from the shed vortices, FbeW t, and the

energy dissipation due to the damping capacity of the blade. In regard

I to this point, it should be repeated that the non-circulation flow compo-

I nent due to the blade vibration exerts no damping effect, and, therefore,

only the mechanical damping should be considered as the damping capacity

Iof the blade. The existence of the limi- cycle should be proved through

a strict mathematical consideration, but it may be anticipated by the

j fact that the magnitude of the reaction force Fb is not affected by the

amplitude of the blade vibration as much as the mechanical damping force

j is affected. With increasing amplitude of blade vibration, the reaction

force remains almost unchanged, whereas the damping force increases so

that an energy balance due to these forces will eventually appear. If the

mechanical damping of the blade is known, one may obtain the locus of the

limit-cycle amplitude on a Uv/U. versus S'/S plane (that is, an ampli-
tude versus reciprocal-of-the-flow-velocity plane). If the locus exists
in the region bounded by the two kinds of criterion limits (the region

indicated by mark-- - in Figures b~a, b, and c) through a certain

range of S'/S , then the self-excited strong singing which manifests it-

self as a step on the frequency-versus-velocity diagram may appear through

the corresponding range of the flow velocity. When the limit-cycle locus

cuts the stable-synchronization limit, the synchronization of shed vortices

with blade vibration may cease. In other words, the closed loop shown in

Figure 2 is opened, and consequently there should be a jump from the self-

excited strong singing state to the weak one with the Strouhal frequency.

While, as seen in Figures lOa, b, and c, the stable synchronization limit

seems to occur always as a lower boundary below which the stability is

lost, the positive-work limit manifests Itself either as an upper or a

I lower boundary, above or below which, respectively, the favorable phase

relation between the blade vibration and the hydrodynamic reaction F be

vanishes. When this limit makes an upper boundary, the limit-cycle locus

does not go up across the limit, because above this boundary the positive

work done by the reaction force can no longer be expected, and further

I
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Increase in the limit-cycle amplitude is impossible. On the other hand,

when the positive work limit appears as a lower boundary, the locus can

cross the limit, and once the crossing occurs the amplitude of the blade

vibration suddenly drops to a low value at which the synchronized shedding

condition Is lost. In this case, even if the positive work limit exists

above the stable-synchronization limit, the Jump from the strong singing

state to the weak one should appear at this crossing.

Thus the particular feature in the singing-frequency-versus-flow-

velocity relation is Interpreted by the self-exciting model. Further,

provided that the mode shape of blade vibration and its mechanical damping

are given, the quantitative derivation of the frequency-versus-velocity

diagram Is also possible, at least in principle. Before entering into

these quantitative details, however, the assumptions and simplifications

adopted in the mathematical development should be refined and reinforced.

Investigation of most of them Is left for future work, but some discussion

is offered below.

The approximations given for the mathematical expressions of the

Influence functions S,(x) and S2 (x) do not seem to alter the nature

of the problem, at least qualitatively. Their essential function as factors

determining the vortex-shedding frequency comes from the fact that S1 (x)

has a finite value starting with x- 0 , while S2(x) is zero at x - 0

and has a finite incubation Interval before the rapid Increase with x

and later diminishing; and these characteristics of Sj(x) and S2 (x)

are kept in the simplified expressions of Equation (11).

Another speculative assumption was made concerning the concentrating

process of the vorticity. To treat the vortex-shedding process in this

way Instead of solving the Navier-Stokes equation may be allowable when

the Reynolds number is not so low and the transportation of the vorticity

by flow Is dominant compared with the diffusion of the vorticity due to

viscosity. For such a case, the most reliable method is to trace the path

of each vortex element shed from the separation points, in the manner

utilized by Rosenhead for the Helmholtz instability problem. This seems

within the capacity of the ordinary computer. In the present work, however,

this numerical process was replaced by a largely simplified mathematical

32
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model, In order to Introduce into the hydrodynamic problem - as generally

as possible - the concepts developed in the non-linear oscillation theory,

and to clarify the present version of the singing phenomenon as self-excited.I
I
I
I
1
[
[

I_

1

I

I
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CONCLUSIONS

A model for the propeller-singing phenomenon considered as a self-

excited oscillation was presented to Interpret the step and jump character-

Istics in the singing-frequency-versus-flow-velocity diagram.

The singing system was simulated by a "closed loop" composed of a

blade as a mechanical vibration system anJ the vortices-shedding mechanism

which is responsible for the shedding of vortices in synchronization with

blade vibration. The numerical calculations made for several types of

blade-vibration mode shape showed that the criteria for the stability of

the synchronized shedding of vortices, together with the criterion for

the phase relation favorable to positive work done by the hydrodynamic

reaction force of the shed vortices upon the blade vibration, can Interpret

the step and jump phenomenon.

In order to Introduce the concepts of the non-linear oscillation

theory into the hydrodynamic problem as generally as possible, large sim-

plifications were made in the mathematical expressions, and consequently

the quantitative detailed treatment required for each particular case is

left for future work.

*34
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